
International Journal of Theoretical Physics, Vol. 1, No. 4 (1968), pp. 373-386. 

Symmetry  and Composite  Particles t 

O. ~'LEISCIIMAN and P. ROMAN 

Department of Physics, Boston University 
Boston, Massachusetts 

Abstract 

The description of systems with internal structure evident only in the presence 
of operators other than  P~ and M,v defined on the space S of the relativistic 
states is explored. The assumption is made tha t  there must  be defined one 
operator of this kind, namely tt - lira Po/c. The individual particle variables 

of a composite are el iminated and a special kind of 'composite particle re- 
presentat ion '  is introduced. The nonrelativistic composite (an isolated molecule) 
is described by  a single value of the Galilei invar iant /z  and many  values of the 
other two Casimir operators C1 and C2, and i t  is this direct sum structure which 
is sought as the contracted l imit  of a relativistic composite particle with all 
its bound state levels. The internal energy operator H0 arises as the contraction 
of (M - / z )  ca, and the correct nonrelativist ic I-Iamiltonian of the composite 
is shown to be given by  H = H0 § P2/2/z. As an application of these ideas, our 
previous results (compare Fleischman & t~oman, 1967) concerning the non- 
relativistic l imit  of the SU3 commutator  structure are rederived in a simple 
manner.  Throughout the paper,  comparison is made with, and ramificational 
remarks are proferred on the extensive related literature. 

1. Introduction 

T h e  s p a c e - t i m e  s y m m e t r i e s  o f  a r e l a t i v i s t i c  p a r t i c l e  a r e  wel l  k n o w n .  
W i g n e r  (1939) s h o w e d  t h a t  t h e  H i l b e r t  s p a c e  a c c o m m o d a t i n g  al l  s t a t e s  
o f  a f ree  r e l a t i v i s t i c  p a r t i c l e  ca r r i es  a u n i t a r y  i r r e d u c i b l e  r e p r e s e n t a -  
t i o n  ( I . g . )  o f  t h e  P o i n e a r 6  g r o u p  ~ .  G i v e n  a s t a t e  r  a l l  o t h e r  s t a t e s  
r  o f  t h e  p a r t i c l e  can  b e  r e a c h e d  v i a  t h e  u n i t a r y  o p e r a t o r  

U(A, a) = e x p  i(1A~ ~ Mr, ~ + aa P a) 

i .e. ,  

r = U(A, a) r 
H e r e  x~'  = A ~ x ~  § a', a n d  M ~  a n d P  ~ a r e  t h e  t e n  h e r m i t i a n  g e n e r a t o r s  
o f  t h e  P o i n e a r 5  g r o u p .  T h e  I . I~.  a s s o c i a t e d  w i t h  t h e  p a r t i c l e  is f u l l y  
c h a r a c t e r i z e d  b y  t h e  e i g e n v a l u e s  o f  t h e  t w o  Ca s imi r  o p e r a t o r s  
Pt, Pt* = - M 2 c  ~ a n d  W~ W~ = - M 2 c ~ ' s ( s  + 1), w h e r e  W~ = !~ . ~ ~)z 2 ~ ] ~ v ( ~ A  ~ r ~  . t  . 

r tCesearch supported in par t  by  the U.S. Air  Force under Grant  No. AF-  
A:FOStl,-385-67. 
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The mass and spin parameters M'  and s' uniquely characterize a free 
relativistic particle. The possible relativistic wave equations for a free 
particle were obtained by Bargmann & Wigner (1946). 

We note here that  a composite particle is described via reducible 
representations of ~ ,  and only the ground state is assoeiatedt with 
an I.R. 

Now, it is well known tha t  isolated hadrons phenomenologically 
possess many features of 'bound states' of a composite system. This 
is exemplified by the structure of SU~ multiplets with fixed spin and 
parity, or by the higher mass 'recurrences' of hadrons with given 
internal quantum numbers and parity at higher spin values. While 
several composite particle models (such as the quark model) have 
been suggested, in the absence of a detailed dynamical law these 
models cannot be seriously considered as a description of the dynamics. 

In view of the absence of such a dynamical law, we have explored 
and we present in this paper a problem which is closely related to 
dynamics. We shall discuss the description of a system with internal 
structure evident only in the presence of operators other than P~ 
and M~v defined on the space S of the relativistic states.~ We have 
been led to the assumption tha t  there must be defined one particular 
operator t~ of this kind. w 

Some aspects of our approach overlap with those of Foldy's work 
(Foldy, 1961) on the description of the relativistic interaction of a 
fixed number of particles, without the introduction of the field concept. 
The notion of relativistic invariance used by Foldy is an extension 
of tha t  given by Dirae (1949) and used by Bakam]ian & Thomas 
(1953). This concept of invariance has been amplified by Currie et al. 
(1964), who also prove a contradiction between the realization of a 
nontrivial interaction via Poincar6 canonical transformations on one 
hand and the eovariant transformation of the position operator of a 
particle on the other hand. II 

t We are indebted to H. P. Diirr (Max Planck Institute and University, 
Munich) for an interesting discussion concerning the decay of relativistic states 
and the impossibility of describing them by I.t~.'s of ~. One cannot mathe- 
matieally 'isolate' a relativistic system in the way that is possible for a non- 
relativistic system. We shall illuminate this point further in the text. See also 
the discussion of the hydrogen atom by Newton & Wigner (1949). 

Of course, the usual internal symmetry operators I, Y, B, Q as well as the 
discrete symmetry operators P, C, T are also defined on S. 

w The precise definition of t~ is given in equation (2.1.4). 
]1 The notion of position operators gk at a given time for localizable elementary 

relativistic systems has been introduced and explored by Newton, T. D. & 
Wigner, E. P. (1949). 
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We, however, are not concerned with the position operator or the 
criterion of localizability of a particle, which, as Newton &Wigner  
(1949) pointed out, are aspects that  'get lost' in the group theoretic 
fundamental description. Indeed, we take the point of view regarding 
composite systems that  the individual particles are really 'lost', and 
that  the dynamical variables describing a composite may not even 
include these entities. For example, the electrons may not 'really' 
exist 'inside' the composite atom any more than the photons do. 

We thus extend the ideas of Foldy (1961) of dealing with the 
relativistic requirements only, and not with 'further extraneous 
conditions which may nevertheless be necessary in order to yield a 
theory which is physically satisfactory'. Foldy himself has eliminated 
manifest covarianee (which is not needed), pair creation (which is not 
wanted in his approximation), separability of the interaction (which 
he could not achieve) and causality (which is only mentioned). We 
eliminate the individual particle variables of the composite as well, 
and we shall deal with a special kind of coml)osite particle re~gresentation 
of the space-time symmetry group. The question of interactions must 
be postponed until we understand the particles themselves. Of course, 
these additional properties should not be excluded by our formalism. 

The suggested composite particle representation is most easily 
understood when examining the nonrelativistic aspect of the problem 
considered by  Foldy (1961) and Currie, et al. (1964). The space-time 
symmetry group of nonrelativistic quantum mechanics is embodied 
in a special representation~ of the inhomogeneous Galilei group ~f. 
The physical interpretation of these representations has not yet  been 
fully explored, even though an excellent start has been made in the 
papers by  Hammermesh (1960) and Levy-Leblond (1963). I t  appears 
that  a great deal more can be said with very little mathematical 
sophistication or detailed calculation. This s tudy constitutes Section 2 
of our paper. 

Levy-Leblond (1963) emphasizes the meaning of the Galilean mass 
superseleetion rule: it shows that  nonrelativistie unstable elementary 
particles cannot exist. We add to this that  every state in an I .g .  of 
is a stationary state in its own restframe; hence it must be stable. 
Thus, nonrelativistic composite particles are also stable. 

t The special representations of N which are capable of describing particles 
are called from the technical point of view, unitary nontrivial projective 
representations of the group of Galilean transformations on the space-time 
manifold. These representations are not equivalent to the true representations, 
and are actually central extensions of the latter. See Levy-Leblond (1963), 
Bargmarm (1954), and Voison (1965b). 
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This fact is of profound importance. The concept of a nonrelativistic 
composite particle is the generalization of an isolated molecule. The 
key word is isolated, for no physical system can actually be isolated. 
However, the I .R. 's  of ~ describe single entities with a well defined 
position operator R which is canonically conjugate to the total 
momentum operator P, and with internal properties, namely the 
internal angular momentum operator 1 and the internal energy 
operator H0. I f  one then turns on an interaction with the rest of the 
Universe, this isolated system can change its 'particle state' of motion 
(R and P) through elastic processes, and it can also undergo internal 
changes (in 1 and H0) through inelastic processes. 

Even though one can never truly isolate a system, the properties 
(attributes) that  the system can possess are described by way of 
extrapolation. In nonrelativistic quantum mechanics the isolated 
interacting system has a well defined mathematical model (in terms 
of a potential). This is not true in the relativistic domain, and hence 
one can never decouple the object of consideration from the outside, 
except for a free particle. 

In  Section 3 we construct a relativistic system which, in the limit 
when the light velocity c becomes infinite, has the vital properties of 
a composite nonrelativistic particle. This limit of an I.R. of ~ was 
first explored by  InSnii &Wigner  (1953), and subsequently they also 
presented (InSnti &Wigner, 1952) the first discussion of the I .R. 's  of 
~. A comprehensive mathematical s tudy of ~ and its representations 
is contained in Bargmann's extensive treatment (Bargmann, 1954) of 
the ray representations of Lie groups. One crucial aspect of the particle 
I .R. 's  of ~ is Bargmann's mass superseleetion rule which we already 
mentioned. 

In a previous p~per (Fleischman & Roman, 1967) we used the 
known relationship (Fleischman & Nagel, 1966) between the space- 
time inhomogeneous Galilei group of nonrelativistie quantum 
mechanics on the one hand and the exact internal symmetry group 
on the other, as a tool to discover facts concerning the corresponding 
unknown relationship for relativistic particles. We found (Fleischman 
& Roman, 1967) that  a set of hadrons with given fixed spin and pari ty 
had as its nonrelativistic limit a set of states similar to those of an 
atom (or molecule), with internal energy eigenvalues Eo obeying the 
Gell-Mann-Okubo (GMO) mass splitting formula 

Eo(t, y) = A + By  + C[t(t + 1) + y2/4] 

This result did not depend upon assuming a quark model or any other 
composite system of interacting relativistic particles. Nor did we 



SYMMETRY AND COMPOSITE PARTICLES 377  

assume a splitting of the interaction into a very strong and a medium 
strong part. We did, however, make the assumption that  Pg was the 
sum of two vectors P~) and P~) which behave differently in the limit 
c -~ oo. In particular we assumed that  ~rP(1)~,_~P(1)l~ = 0, and that  P~) 
and n(1) when --> oo. [P~,r~ ] tend to zero c This defined four operators 
P~) (in addition to the Poincar6 generators P~ and Mg~) which act 
on the relativistic state space S. We also assumed that each hadron, 
separately, was described by  means of an I.R. o f ~ .  

At the end of Section 3 we shall show that  our previous results 
(Fleischman & Roman, 1967) can be recovered without making any 
of these detailed assumptions on P~, using only the assumption of 
Section 2, namely that  the Galilean mass operator /~ = lim Po/c  is 

C---> CO 

defined on the space S of relativistic states. In this respect we remark 
that  the interaction studies of Foldy (1961) and Currie et al. (1964) 
naturally assume that  many more operators (namely, the individual 
particle dynamical variables) are defined (in addition to Pg and Mg~) 
on the space S. Even if one removes this feature from Foldy's work 
(Foldy, 1961), there still remains the fact that  he has assumed P0 
and M0j to possess expansions in powers of c -1 and that  therefore 
many additional operators are defined on S. In contrast, our construct 
of Section 2 makes a much weaker assumption, namely that  of/z 
alone being an additional operator on S. 

2. Non-Re la t i v i s t i c  Composi te  Part ic les  

2.1. The  Contraction ~ --> 

Let us begin our construction ofa  nonrelativistic particle description 
with a unitary representation of the Poincar6 group ~ .  The com- 
mutation relations of the Hermitian generators P~ and M~. are 

[P t ,  Pv] = 0 (2.1.1a) 

[ M g , , P  k] = i(gt~kP~ - g~kPg) (2.1.1b) 

[Mt~ ~, M ~ ]  = i(gt~,Mv~ 4- gv~Mg(, - gt~kM~, - g ~ M t ~ )  (2.1.1c) 

Our metric is g00 = - 1 ,  gkk = +1 and we take h = 1. The positive 
timelike representations are suitable to describe particles, whence the 
mass operator is given by  the Casimir operator 

Pt~P t~ = - - M  2 c 2 (2.1.2) 

The contraction procedure is defined by keeping the generators 
P and J~ ==- E0ijkM jk (i = 1,2, 3) of the Euclidean subgroup of 
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fixed, while P0 and M0i are taken to be of order c. The pure Lorentz 
transformations thus go to the pure Galilean velocity transformations 
generated by K~, where 

K~ _= lira Mol/C (2.1.3) 
O ~  cO 

The mass operator/~ is defined by 

/~ =- limP0/e (2.1.4) 
e---> 

Thus we have defined the set F of ten generators 

F - -  {V, ,l, K,/~} (2.1.5) 

as the limit of the ten generators ~ = {P~, M~}. The set F is a closed 
Lie algebra, and we have 

[Pl, P~] = [K~, Kj] = 0 "~ 

[~, Pi] = [t L, J J  = [t L, KJ  = 0 )  (2.1.6) 

[Ki, Psi = i~ij I~ 

[Ji, Vj] = ieijk V~ 

where we have used the shorthand 

V - {J, P, K} (2.1.6a) 

The above contraction process, however, has not defined the vital 
generator of implicit temporal evolution, i.e., the Hamiltonian H 
which (in the SchrSdinger picture, for example) determines the 
dynamical development of the wave function through the time 
dependent Schr5dinger equation 

i ~ =  Hr  (2.1.7) 

The representations studied by Hammermesh (1960) and by Levy- 
Leblond (1963) are essentially those for which H is the limit of the 
relativistic kinetic energy operator T, i.e., 

T = c(P o - V [ - P ~ P ' ] )  -~ P2/2/, = H (2.1.8) 

The operator H so defined commutes with all the operators of /" 
except K and we find 

[ H, Kj] = --iPj (2.1.9) 

By having chosen the representations for which H is given by (2.1.8), 
the above authors have eliminated all composite particles, and obtain the 
SchrSdinger equation for a free particle. 
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To see more explicitly what this means, le t  us consider the whole 
algebra, including H. One finds that  there are three operators which 
commute with all operators of N. These are 

t~ 

C1 - (~J + K x p)2 

C2 ~ 2~H -- P2 

(2.1.10a) 

(2.1.10b) 

(2.1.10c) 

An I.R. is characterized by three parameters, the eigenvalues of tL, 
C1, and C2. Hammermesh and Levy-Lebloncl have chosen C2 = 0, the 
former without discussion and the latter with a number of comments, 
which we shall elaborate on. But  first we wish to recall the usual 
t reatment of a nonrelativistic molecule (or atom). 

2.2. The isolated nonrelativistic molecule 

The Hamiltonian H of the isolated molecule is a given function of 
the individual particle masses m (~), positions r (~), canonical momenta 
p(~), and spins a (~). One then defines ~, P, J, and K by setting 

/x ~- ~ m (~) 

P = E P(~) ) (2.2.1) 
J - E (r <~) • p<~> + ~<~)) 

K = tP - / ~ R  

where we use the symbol R for the center-of-mass position operator, 

R = t~ -1 E m(~) r(~) (2.2.1a) 

We note here that  the structure of K is derived (Fleisehman & Nagel, 
1966) from the requirement tha t  it transform under rotations like a 
vector and tha t  U(v)-~ exp(iK.v) produce the transformations 
r (~) --> r (~) + vt ,  p(~) --> p(~) + ~n(~)v, 6 (~) --> a (~). 

The operators defined by (2.2.1) satisfy the commutation relations 
(2.1.6) of N, and H is chosen to be a function of the individual particle 
variables which commutes with tL, J, P and is such that  the remaining 
relation (2.1.9) is also satisfied. 

We now set 
1 = J - R • P (2.2.3) 

and observe that  it commutes with P, R, H,/x, and C~. Thus, 1 may be 
identified with the internal angular momentum operator of the 
isolated molecule; it is a constant of motion which is also translation 
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invariant and unaffected by velocity transformations, t Furthermore, 
we see that  

= (2 .2 .4 )  

The possible values of our operators depend, of course, on the 
particular dynamics given by the choice of H. For example, for a 
hydrogen atom without spin the values of C~/2~ are given by -13.6 
eV/n 2 with n ~ 1, 2, .... However, the full problem involves the deter- 
mination of all possible eigenvalues of C1 and C2 for the system. In  
view of (2.1.10a-c), the parameters of the problem are chosen to be 

(mass) 

Eo = C2/21~ (internal energy) 

l(I + 1) -- C1/~ 2 (internal angular momentum) 

( 2 . 2 . 5 )  

The value of/~ is the same for all states of the molecule and leads 
to a superselection rule among different molecules, preventing the 
existence of unstable molecules, as has been emphasized by Levy- 
Leblond (1963), with the limitation to free rather than composite 
particles. 

The very existence of the parameter E0 allows one to construct a 
mathematical structure of stable isolated excited states which are not 
the physical states. The physical states decay, but  from the mathe- 
matical point of view this occurs only because one 'turns on' an 
external field. The mathematical separation of the object of s tudy 
from the external word is possible in nonrelativistic quantum mech- 
anics, but  such a mathematical separation is excluded in relativistic 
theories, except for free particles. Thus, when Levy-Leblond (1963) 
calls E0 an arbitrary parameter which can be set equal to zero he, 
like Hammermesh (1960), is forced to deal only with free elementary 
particles, in  this framework [as well as in Voison's work (Voison, 
1965a, b)] composites enter only through the tensor product of two 
representations of ~ which are then allowed to interact. Indeed, this 
kind of t reatment  is the only one permitted for ~ ,  but  a considerably 
simpler t reatment  is allowed for ~. 

Actually the general representations constructed in detail by 
Voison (1965b) [using Mackey's method (Mackey, 1955)] and by  
Levy-Leblond (1963) [using little groups (Wigner, 1939)] also cover 

t The system is invariant under the internal SU2 group generated by l and 
hence under the group (SU~n~• ~)/Z2, as shown by Fleischman & Nagel 
(1966). Indeed this is true for a general I.l~. of ~ and not merely for the molecule 
model. 
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the  general case of a molecule. I f  one wishes to describe all the states of an 
isolated molecule (or more precisely, the direct  sum of the  I .R. ' s  of the 
associated Lie algebra), all that one has to do is to describe the direct 
product by a single ~ and many  values of C1 and C2. I t  will be this direct 
sum structure that we later seek as the contracted limit of a relativistic 
composite particle with all its bound state levels. Thus, the hydrogen  
a tom replete  with all its exci ted states (which has been excluded in 
the work of Newton  & Wigner  (1949) as a part icle since it  is not  
e lementary)  will now appear  as a set of noninterae t ing  stable particles, 
each wi th  a mass opera tor  ~, a posi t ion opera tor  R, an internal  angular  
m o m e n t u m  opera tor  l, and an internal  energy opera tor  H 0. In  o ther  
words, the  cont rac t ion  procedure  provides us with a me thod  of 
' turning off the interact ion '  wi th  the external  world. 

In  order  to e laborate  on our ideas expressed above, we first recall 
t h a t  the analysis of free nonrelat ivis t ic  particles has shown (among 
o ther  things) t h a t  t hey  possess only the a t t r ibutes  of a free relativist ic 
particle,  n a m e l y / x  and I. A s  a generalization, we now define a non- 
relativistic composite particle as an entity whose states are described by 
a set of I .R . ' s  of ~,  each with the same t~, but with a definite range of 
values t for C1 = 1~21(l + 1) and C2 = 2/~E0. Each  composite part icle is 
described by  the  operators  of the  Galilei group, with the obvious 
identif icat ion from our  molecule discussion, i.e., 

/z = Galilean mass opera tor  1 

P - m o m e n t u m  opera tor  

l~ = / x - l ( t P  --  K )  =- canonical posit ion opera tor  I (2.2.6) 
| 

a - 1 _-- J - R • P - spin opera tor  I 
I 

H 0 - H - P2/2/x - internal  energy opera tor  J 

The interact ions of these particles with each other  will be described 
via the  tensor  p roduc t  space, forming an I.I~. of ~,  as was exemplified 
by  our  molecule discussion. In  general, there  will be scat ter ing states 
as well as bound  states. The two-part icle  problem has been t r ea t ed  
in detail  by  Levy-Leb lond  (1963) and b y  Voison (1965b). Th ey  
obta ined  the  reduct ion  of  each I .R.  of the two-part icle  system into 
the  I .R. ' s  of each part icle conta ined within it. The  generalizat ion to 
N-par t ic le  states is not  diffi cult to visualize. Finally,  we note  t h a t  the 
interact ions of a composite part icle with an external  field will not  in 

t The  e igenvalues  1 are  in tegers  or ha l f - in tegers  (associa ted  w i t h  t he  cover ing  
g roup  of N or ~ )  a n d  t h e  e igenvalues  of E0 eor respond ing  to  b o u n d  s t a t e  levels 
will h a v e  to fo rm a discre te  set,  while  s ca t t e r i ng  s t a t e s  lie in  t h e  c o n t i n u u m .  

25 
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general yield Galilean invar ian t  states, since the  external  field does 
not  necessarily possess this symmet ry .  

3. Relativistic Particles 

3.1. Definition of the nonrelativistic H 

In  Section 2.1 we described the contract ion ~ --> F where F was 
the algebra of ~ wi thout  the nonrelat ivis t ic  Hami l ton ian  H. The 
opera tor  H was only defined for the free part icle representa t ions  for 
which C.z = 2/,H - p2 = 0. We now present  a prescr ipt ion for defining 
a more general H such t h a t  C2 is a nonvanishing operator ,  capable of 
taking on different eigenvalues for the limit states of  the space S'  
which arises upon contract ion f rom the relativist ic s ta te  space S. 

Our definit ion of H is mo t iva t ed  by  the  work of  Fo ldy  (1961), who 
developed a relativist ic construct  for a finite n u m b er  of in teract ing 
particles, assuming an expansion of  P0 and M0j in powers of c. All 
generators  Pt*, M~,  are to be explicit ly const ructed funct ions of the 
dynamica l  part icle variables r (~), p(~), a (~). 

Fo ldy ' s  expansion,  wi th  H (~ and  K~ ~ t aken  to  be the  Galilean 
generators,~ is 

cPo = tzc z + H (~ + H (1) + �9 �9 �9 
(3.1.1) 

Mo;C = K} ~ + / ; } "  + " "  

The operators  t*, H(~), and K} ~) are thus  defined to exist  on the rela- 
t ivistic space S of states and are cons t ructed  from the  particle 
dynamica l  variables.  I n  contrast,, in our  const ruct  the only additional 
operator assumed to be defined on S, shall be t~. 

Foldy ' s  result  (Foldy, 1961, equat ion  75) is 

Po = c-1( h2 + c2P2) 11~ 

where 
h =/~c ~' + h (~ + h O) + �9 "" 

with 

(3.1.2) 

(3.1.3) 

(3.1.3a) h(O) = U(O) + ~ ~(~)2/2m(:) 

h (1) = --(2/LeZ) - I  h(~ ~ + W (1) (3.1.3b) 

t We no te  here  Lhat l%ldy  does no t  make  the  a s sumpt ions  concerning K as 
we did, compare  our  p a r a g r a p h  following equa t ion  (2.2.1a). Hence ,  in order  to  
ob ta in  K = tP - /~ l~ ,  he  relies on a ques t ionable  u n i t a r y  t r an s fo rma t i o n  to  a 
special r ep resen ta t ion ,  see F o l d y  (1961, p. 281). His  reasoning assumes more  
general ly  t h a t  for t he  in te rac t ing  Galilean sys tem,  K -+ K + V and  H -+ H + U, 
as sugges ted  by  Dirac (1949). F o l d y  notes  t h a t  while one can sat isfy the  com- 
m u t a t i o n  re la t ions  of ~f for U r 0 w i th  V = O, th is  is n o t  t he  case in respec t  
to  ~ .  H e n c e  he declines to  m a k e  the  a s sumpt ion  V = 0 ab initio even for N. 
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Here U (~ is the Galilean potential  energy operator, and W (~) is a 
rotat ional ly  invar iant  function of the internal  variables~ m (~), ~(~) and 

~(~) - R - r ( ~ )  

~(a) _ p(a) _/~-1 m(~) p 
(3.1.3c) 

Comparing (3.1.2) and (2.1.2) we see t ha t  Foldy 's  h is related to the 
relativistic mass M by  the relation 

h = Mc  2 (3.1.4) 

Hence, (3.1.3) can be rewrit ten as 

(M - t~)c a = h (~ + h (~) + - . .  (3.1.5) 

The h (~ of Foldy 's  expansion is independent  of c; in our viewpoint, 
it is precisely the internal energy operator H o defined by FoIdy to act on 
the relativistic state space S. In  the limit when c -~ ~,  

(M - / z )  e e -+ H 0 (3.1.6) 

For  bound states, H0 has negative eigenvalues, which describe the 
binding energy of the system. Hence the Galilean mass t~ is greater 
than the relativistic mass M.  We recall t ha t  in our framework the 
c-independent operator/~ is defined by equation (2.1.4). We then talce 
equation (3.1.6) as our definition of the nonrelativistic internal energy 
Ho, and we require that Ho commute with all operators of F = {/z, P, J, K}. 
I t  then  follows tha t  Ho will also commute with the nonrelativistic 
Hamil tonian H defined by 

H ~ H 0 + la2/2/z (3.1.7) 

Hence H0 is a Casimir operator of ~,  with the eigenvalues E0 = C2/2l~. 
I t  is readily seen tha t  the relativistic operator t ha t  goes to H as 

e ~ oo is$ 
T + ( M - t z ) e 2 = ( P o c - M e ~ ' ) + ( M - t L ) c  2 (3.1.8a) 

Thus we see t ha t  
Poc - tzc 2 -~ H (3.1.Sb) 

With/~ being the Galilean restmass and with  (3.1.6), these equations 
give a pictorial in terpretat ion of H. 

The  internal coordinates ~<a) a n d  ~x (a) def ined b y  (3.1.3c) c o m m u t e  w i t h  P 
a n d  R. T h e y  obey  t he  re la t ions  ~ m (~) ~(~ = 0 = ~ ~(~). F o r  a f u r t h e r  discussion 
of i n t e rna l  va r i ab les  see F l e i s chman ,  O. (1967), Boulder Summer Institute of 
Theoretical Physics, to  be  pub l i shed .  

$ The  def in i t ion  of T is g iven  b y  (2.1.8). 
25* 
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The results of Hammermesh (1960) and Levy-Leblond (1963) 
depend on the circumstance that  P2/2/, (which, in that  framework, 
is the Hamiltonian) obeys the commutation relations of ~. We now 
show that  our H also has this necessary property. First we observe that  
H [as defined by (3.1.7)] commutes t with all the operators of 
except K. The commutator [H, K~] is derived by noting that  from the 
third relation in (2.1.6) it follows that  

[(2~) -1  1 ~2,/~j] = (2~) -1  (--2i[~Pj) : - i P j  

In summary, we then have 

[H, F] = [H, P] = [H, J] = 0 ] 

[H, Kj] = - iPj  I (3.1.9) 

These relations justify calling H the Hamiltonian operator in the I.R. 
of ~ that  describes the nonrelativistic stationary composite particle 
states. In passing we note that  the correct commutation relations 
(3.1.9) follow because P2/2/~ satisfies them and because H does not 
occur as a commutator of ~. This last circumstance is a remarkable 
distinguishing feature of ~ as contrasted with ~ .  

We shall explore in a subsequent paper the commutation structure 
of/~, P. ,  and MvA. Presently, we shall give an application of the 
construct which we developed above. 

3.2. The nonrelativistic limit of approximate S U3 
In a previous paper (Fleischman & Roman, 1967) we studied the 

nonrelativistie limit c -> oo of the S U~ commutation relations satisfied 
by P0, given the Okubo and Gell-Mann prescription that~C 

P o = a Y '  (3.2.1) 

Thus, with X+_ = U+_ or V+, of SUB, we have 

[Po, X+] = =EaX+_' (3.2.2) 

We assumed in a previous paper (Fleisehman & Roman, 1967) that  
a was c-dependent but Y', U+_', V+-', I ' and Y, U_+, V+,, I did not 
depend on c. We then deduced that  [t*, X_+] = 0, while Ho could satisfy 
[Ho, X+,] =• and hence have eigenvaIues obeying the GMO 
mass splitting formula. In that  calculation we assumed (a) that  P~ 

D(2) Fp(1) p(1)] was the sum of two vectors P~) and ~ (b) that  L ~  ,--v J = 0, and 
Fp(1),p (c) tha t  P~) and L ~ ~] vanished when c-+  oo. We then defined 

t Note  t h a t  H0 in (3.1.7) has been shown to be a Casimir operator.  
.~ Regard ing  notat ion,  see F le i schman & R o m a n  (1967). 
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Ho =- -cP(o 1). We also confined ourselves to the rest frame states with 
P ~ 0 .  

In  our present framework, we replace (3.2.1) by  

and hence have 

Since M -> t~, we get 

M = a Y '  (3.2.3) 

[M, Xe] = •  (3.2.4) 

[/~, X• = :kX• l i m a  - •177 (3.2.5) 
C ---> o 0  

Thus,  from (3.1.6), (3.2.3) and (3.2.4), 

!H0, X• = • -- b) X+_' (3.2.6) 

which must  remain finite. Consequently, a - b is of order less t han  c -2. 
I f  we choose a independent  of c, then  we have the same value of H0 

with/~ (and also M) satisfying the mass splitting formula. Thus, we 
are led to a set of independent  nonrelativistic particles with the same 
internal  energy and different masses. I f  one does not  consider the 
relationship of this mult iplet  to other multiplcts,  then  H0 can be 
regarded as a free parameter  [compare Levy-Lcblond (1963)] which 
can be set equal to the zero of the energy scale so tha t  we have a set 
of fl'ee particles wi th  masses obeying the GMO formula. 

If, however, l i m a -  b = 0 when c - +  o% then by  (3.2.5), /~ is an 
SU~ scalar. If, furthermore,  c2a stays finite when c - ~  o% then by  
(3.2.6) H0 will give rise to the GMO formula. 

Thus, our new prescription (3.2.3), together with the old assumption 
tha t  X_+ and  X+' is independent  of c, and with the only further  
assumption tha t  

a = o(c -2) (3.2.7) 

reproduces our previous results (Fleischman & Roman,  1967), which 
were 

l ime 2 a = a ' < ~  1 
[/~, X• = 0 [ (3.2.8) 

/ 

J [H0, X• = ~:a' X+_ 
g 

All hadrons wi th  a given common spin and par i ty  have as their  non- 
relativistic limit a set of I .R. ' s  of ~ which look like those of an isolated 
molecule (or atom):  t hey  have common mass/z  (and common spin) 
and  differing internal  energy eigenvalues 

Eo(t,y) = A + By  + C[t(t + 1) - yZ/4] (3.2.9) 
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I n  t he  f r a m e w o r k  o f  the  t h e o r y  as es tab l i shed  in Sec t ion  2, no  specific 
a s s u m p t i o n s  as were  used  in our  p rev ious  p a p e r  (F l e i schman  & 
R o m a n ,  1967) are  needed.  
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